

Agenda

Background

- -Earned Value Management & Metrics
- Strengths & Weaknesses
- What is Earned Schedule
- Sample Calculations
- •Examples from LM Project Data
- Summary / Questions

Earned Value Management – History & Value

- Earned Value Management (EVM)
 - Formalized in the 1960s as C/SCSC
 - EVM becomes industry standard with ANSI/EIA 748
 - EVM formulas remain the same
- The EVM Advantage
 - Enforces Project Management discipline
 - Predictive capability not just History
 - Cost Performance Index (CPI) Validated over many projects

- CV= Cost Variance How much was done minus how much was spent (BCWP-ACWP)
- SV= Schedule Variance What got done minus what was planned (BCWP-BCWS)
- CPI= Cost Performance Index How much was done divided by how much was spent (BCWP / ACWP) "Bang for the buck"
- SPI= Schedule Performance Index How much was done divided by how much was planned (BCWP / BCWS) "Time is money"

EV Metrics Validated

CPI Validated

- The DoD study in 1977 proved with as little as 15% of the program completed, the Cost Performance Index (CPI) accurately predicted future cost performance.
 - DoD study of 400 programs, CPI did not significantly change after 15% complete, Updated study, by Quentin Fleming in 1998, included over 700 programs and showed the same result

What about SPI ?

- Studies have shown Schedule Performance Index (SPI) starts losing predictive relevance in the later stages of the program
 - Professional Management Associates EAC Calculations to Project Life Cycle 2004

Quirks of Schedule Variance

- Most people think of schedules in time units.
 - Is the project ahead or behind in days, weeks or months
- Schedule Variance is usually stated in \$.
 - A dollar schedule variance is difficult translate to time for many managers.
- Schedule Variance returns to "0" at the end of a project, SPI returns to "1".
 - Perfect performance When it was only (?) months late

SPI & SV Magical Correction

Month	Σ BCWS	Σ BCWP	SV	SPI
1	100	98	-2	0.98
2	350	325	-25	0.93
3	650	600	-50	0.92
4	1050	960	-90	0.91
5	1500	1360	-140	0.91
6	2000	1830	-170	0.92
7	2500	2260	-240	0.90
8	2950	2665	-285	0.90
9	3350	3075	-275	0.92
10	3650	3350	-300	0.92
11	3900	3575	-325	0.92
12	4000	3725	-275	0.93 🔉 🍏
13	4000	3800	-200	0.95
14	4000	3875	-125	0.97
15	4000	4000	0	1.00

Example – ΣSPI(c)

\$(000)		Monthly	Σ BCWS	Σ BCWP	SPI _(c)
	Period	BCWS			
	43	\$2,085	\$257,345	\$231,611	.90
	44	\$ 627	\$257,971	\$231,611	.90
	45	\$ 219	\$258,190	\$231,611	.90
	46	\$ 19	\$258,208	\$231,611	.90
	47	\$ 33	\$258,241	\$231,611	.90
	48	\$64	\$258,305	\$231,611	.90

Once 80% complete, monthly gains only have marginal effect on ΣSPI. Smoothing effect is increased by lower monthly budgets typically established in the final phase program

If the project had Σ BCWP of \$231,611 in month 43 then SPI = 0.90 (\$231,611 / \$257,345) If *NOTHING* was done for the next 6 months SPI would still equal 0.90 (rounded) (\$231,611 / \$258,305)

SPIc Historical Smoothing

More dramatic effect on large dollar programs

Earned Schedule

- Earned Schedule (ES)
 - Proposed in 2003 by Walter Lipke
 - New formulas for Schedule Variance and Schedule Performance Index based on time
 - Validation currently in progress
- Earned Schedule Advantages
 - Expressed in time units
 - Does not revert back to 1.0 at the end of a project
 - Predictive capability

Earned Schedule – It's About Time

- Earned Schedule is done by projecting BCWP on to BCWS and then measuring the time units
 - Better understanding of project status
 - Closer relation to CV and CPI metrics
- Earned Schedule does not return to 1.0
 - Usable through out project life cycle
 - Historical reference for future projects
 - Predictive capability under research & evaluation
- Earned Schedule is based on Σ BCWP and Σ BCWS
 - EVM data points you are already collecting
 - -No new software; No Salesman will call

Earned Schedule : How it Works

7 months gone by, but the project only has "Earned Schedule" to Month 5 Which SV "Answers the mail?" \$ behind or 2 months behind schedule?

Earned Schedule : How it Works

7 months gone by, but now project has "Earned Schedule" to Month 9 As a program manager how would define this project? \$ or 2 mo. ahead Earned Schedule - The New Math

Earned Schedule Suggested Acronyms

Earned Schedule = ES(Similar to EV Cost)Schedule Variance (time) = SVt(Similar to CV)Schedule Performance Index (time) = SPIt(Similar to CPI)Actual Time = AT(Latest Status Date)Planned Duration = PD(Project Duration)

Independent Estimate at Compete, Time = IEAC_t (Similar to IEAC)

Earned Schedule - The New Math

Earned Schedule Formulas

Earned Schedule =

Whole months completed were Σ BCWP $\geq \Sigma$ BCWS + fractional month completed

= Month (X) + [(Σ BCWPt– Σ BCWSx) ÷ (Σ BCWSy– Σ BCWSx)]

(X = whole month earned; Y = month following X; T = Actual TIme)

Schedule Variance (time) = Earned Schedule - Actual Time (ES – AT = SV_t)

Schedule Performance Index (time) = Earned Schedule ÷ Actual Time (ES ÷ AT = SPI,)

Independent Time Estimate at Compete (time) = Planned Duration \div Schedule Performance Index (time) (PD \div SPI_t = IEAC_t) Don't Panic – It's not that hard!

Earned Schedule =

Whole months completed were Σ BCWP $\geq \Sigma$ BCWS + fractional month completed

= Month (X) + [(Σ BCWPt– Σ BCWSx) ÷ (Σ BCWSy – Σ BCWSx)]

x = whole month earned y = month following X t = Actual Time (Time Now)

Calculating ES -Extrapolation Between the points - (Time Now - Month 7)

Month (X) + [(Σ BCWPt– Σ BCWSx) + (Σ BCWSy – Σ BCWSx)]

x = whole month earned; y = month following x; t = Actual Time (Time Now)

- Find X BCWP to BCWS Σ \mathbf{E} BCWS BCWP Month • 2260 ≥ 2000 X = 615005 1360• BCWPt – BCWSx = Fi 2000 1830 • (2260 - 2000) 2260 7 2500 BCWSy – BCWSx = 8 2950• (2500 - 2000) 3350 9
- $ES = 6 + (2260 2000) \div (2500 2000)$
- ES = 6 + (260 ÷ 500) = 6.52
- We are in month 7 but only Earned 6.52 months of Schedule

• Schedule Variance (time) = Earned Schedule - Actual Time (ES - AT = SVt) = 6.52 - 7 = -.48 Months Behind

 Schedule Performance Index (time) = Earned Schedule ÷ Actual Time

(ES ÷ AT = SPIt) = 6.52 ÷ 7 = .93 Earning Schedule at 93% efficiency (in months)

Independent Time Estimate at Compete =
 Planned Duration ÷ Schedule Performance Index (time)
 (PD ÷ SPIt = IEACt) = 12 ÷ .93 = 12.90 Time to Complete

Filling in the rest of the data -

Month	Σ BCWS	Σ BCWP	SV _c	SPI _c	SV _t	SPI _t
1	100	98	-2	0.98	-0.02	0.98
2	350	325	-25	0.93	-0.10	0.95
3	650	600	-50	0.92	-0.17	0.94
4	1050	960	-90	0.91	-0.23	0.94
5	1500	1360	-140	0.91	-0.31	0.94
6	2000	1830	-170	0.92	-0.34	0.94
7	2500	2260	-240	0.90	-0.48	0.93
8	2950	2665	-285	0.90	-0.63	0.92
9	3350	3075	-275	0.92	-0.69	0.92
10	3650	3350	-300	0.92	-1.00	0.90
11	3900	3575	-325	0.92	-1.25	0.89
12	4000	3725	-275	0.93	-1.70	0.86
13		3800	-200	0.95	-2.40	0.82
14		3875	-125	0.97	-3.10	0.78
15		4000	0	1.00	-3.00	0.80

SPI_{cost} vs. SPI_{time} Graphically

{Notional Data from Slide 19}

ES – EZ Method

• Do ES by hand? (Who has time?)

• Use a spreadsheet

	A	В	С	D	E	F	G	Н		J	K	L	M
1	BCWPcum	BCWScum	# Pc=>Sc	Numerator	Denominator	InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	AT	SV(t)mo	SV(t)cum
2	0	0									0		
3	98	100	0	98	100	0.9800	0.9800	0.9800	0.9800	0.9800	1	-0.0200	-0.0200
4	325	350	1	225	250	0.9000	1.9000	0.9200	0.9200	0.9500	2	-0.0800	-0.1000
5	600	650	2	250	300	0.8333	2.8333	0.9333	0.9333	0.9444	3	-0.0667	-0.1667
6	960	1050	3	310	400	0.7750	3.7750	0.9417	0.9417	0.9438	4	-0.0583	-0.2250
7	1360	1500	4	310	450	0.6889	4.6889	0.9139	0.9139	0.9378	5	-0.0861	-0.3111
8	1830	2000	5	330	500	0.6600	5.6600	0.9711	0.9711	0.9433	6	-0.0289	-0.3400
9	2260	2500	6	260	500	0.5200	6.5200	0.8600	0.8600	0.9314	7	-0.1400	-0.4800
10	2665	2950	7	165	450	0.3667	7.3667	0.8467	0.8467	0.9208	8	-0.1533	-0.6333
11	3075	3350	8	125	400	0.3125	8.3125	0.9458	0.9458	0.9236	9	-0.0542	-0.6875
12	3350	3650	9	0	300	0.0000	9.0000	0.6875	0.6875	0.9000	10	-0.3125	-1.0000
13	3575	3900	9	225	300	0.7500	9.7500	0.7500	0.7500	0.8864	11	-0.2500	-1.2500
14	3725	4000	10	75	250	0.3000	10.3000	0.5500	0.5500	0.8583	12	-0.4500	-1.7000
15	3800		10	150	250	0.6000	10.6000	0.3000	0.3000	0.8154	13	-0.7000	-2.4000
16	3875		10	225	250	0.9000	10.9000	0.3000	0.3000	0.7786	14	-0.7000	-3.1000
17	4000		12	0	-4000	0.0000	12.0000	1.1000	1.1000	0.8000	15	0.1000	-3.0000
18			Pc=>Sc	NUM	DENOM	InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	AT	SV(t)mo	SV(t)cum
19			Pc=>Sc	NUM	DENOM	InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	AT	SV(t)mo	SV(t)cum
20			Pc=>Sc	NUM	DENOM	InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	AT	SV(t)mo	SV(t)cum
21			Pc=>Sc	NUM	DENOM	InterpVal	EScum	ESmo	SPI(t)mo	SPI(t)cum	AT	SV(t)mo	SV(t)cum

Spreadsheet developed by Walter Lipke, available on the Internet

Earned Schedule as EVM Analytical Tool

- Earned Schedule Validation Checks
 - SPI(t) Does not revert back to 1.0 like SPI(c)
 - Independent Time Estimate At Complete (ITEAC) based on SPI(t) may be used to estimate time to complete
- Earned Schedule applied to three unique programs
 - Evaluate SPI(t) vs SPI(c)
 - Evaluate ITEAC vs Completion dates

ES in the "Real World" Example 1

- The Project
 - Reporting 99.9% complete as of July 2005
- ~ \$260 million dollar contract (CPIF)
 - Original 48 month duration
 - Planned End Date Dec 2004
 - Actual Completion July 2005 7 month Slip
- Earned Schedule Calculations
 - Data points for the last 34 months
 - $-SPI_c$ and SPI_t
 - $-IEAC_t$ (PD ÷ SPI_t)

ES SPI_c vs. SPI_t Tracking

ES for Schedule Completion Independent Time Estimate At Complete (ITEAC)

ES in the "Real World" Example 2

- The Project
 - Reporting 100% complete as of March 05
- ~ \$4.60 million dollar contract
 - 39 month duration
 - Planned End Date Dec 2004
 - Completion Mar 05 (3 month Slip)
- Earned Schedule Calculations
 - $-SPI_c$ and SPI_t
 - ITEAC (Planned Duration ÷ SPI_t)

ES SPI_c vs. SPI_t Tracking

ES for Schedule Completion Independent Time Estimate At Complete (ITEAC)

ES in the "Real World" Example 3

- The Project
 - Software Development
 - 6 months into 14 month project
 - Project needs new baseline, projecting 6 month slip
- Program Manager comment -
 - EVM did not provide early warning of projected slip
 - New Planned End Date Month 23
- Earned Schedule Calculations
 - $-SPI_c$ and SPI_t
 - ITEAC (Planned Duration ÷ SPI_t)

Total Program

Program Excluding LOE

ES Independent Time Estimate At Complete

Calculated on 14 month planned duration

- Total Program
- 14 ÷ Average ES (SPI_{time})
- 14 ÷ .79 = 17.7 months
 (3.7 month Slip)

- Program w/o LOE
- 14 ÷ Average ES (SPI_{time})
- 14 ÷ .737 = 19 months (5 month Slip)

- ES is based on incremental gains against BCWS
 - Observing incremental schedule gains with SPT(t) will lead to more volatility of data points like monthly CPI
 - -Reacts faster to schedule issues than SPIc
 - -Potential for Duration forecasting
 - May require several months data to establish actual trend
 - Trend lines may be used to smooth data
 - Check and balance for current metrics

ES Summary -

- New & Emerging Concept
 - Academic Research and Proof of Concept
 - Air Force Studying Concept
 - PMI Australia and Belgium (Academic Studies)
 - Boeing in Seattle on the 787 DreamLiner
 - UK MoD on Nimrod and Type 47 Destroyer Projects
- ES requires a firm baseline / sound EVM practices ES will not cure -
 - PMF (Performance Measurement Flexline)
 - EV "Gaming"
 - Non Critical Completions; Front Loading
 - Does not replace Critical Path Schedule Analysis

ES Summary

- Moving Forward
 - Adoption of ES in EVM and PM Practice
 - Education and Training
 - Incorporation of ES formulas in EVM / PM software
 - Used in conjunction with current validated metrics for project measurement and analysis
- Bottom Line
 - Appears to be a better way to analyze EVMS schedule performance
 - First new concept in Earned Value theory & practice since C/SCSC established in the '60's

Learn More ? ES Web Site

www.earnedschedule.com

